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A Statistical Characterization of Solar Photovoltaic 
Power Variability at Small Timescales 

Sandra Shedd, Bri-Mathias Hodge, Anthony Florita, and Kirsten Orwig 
National Renewable Energy Laboratory 

Golden, CO 80401; USA 

Abstract—Integrating large amounts of variable and uncertain 
solar photovoltaic (PV) power into the electricity grid is a 
growing concern for power system operators in a number of 
different regions. Power system operators typically 
accommodate variability—whether from load, wind, or solar—
by carrying reserves that can quickly change their output to 
match the changes in the solar resource. At timescales in the 
seconds-to-minutes range, this is known as regulation reserve. 
Previous studies have shown that increasing the geographic 
diversity of solar resources can reduce the short-term 
variability of the power output. As the price of solar has 
decreased, the emergence of very large PV plants (greater than 
10 MW) has become more common. These plants present an 
interesting case because they are large enough to exhibit some 
spatial smoothing by themselves. In this work, we examined 
the variability of solar PV output among different arrays in a 
large (~50 MW) PV plant in the western United States. We 
examined the correlation in power output changes between 
different arrays as well as the aggregated plant output at 
timescales ranging from 1 sec to 5 min. 

Keywords—photovoltaic power generation, stochastic 
processes, power system operation 

I.  INTRODUCTION 
Worldwide interest in higher penetration of solar 

photovoltaics (PV) into power systems is increasing. A 
consequence of increased levels of solar penetration is 
increased variability and uncertainty in power generation 
within the system. An important consideration in the 
integration of increased amounts of solar PV generation is 
the characterization of how the power output changes at 
multiple timescales and in different atmospheric conditions. 
Power system operators accommodate variability because of 
load, wind, or solar through systems of reserves that adjust 
power output levels of dispatchable plants to meet changes in 
demand or changes in variable generation. At short 
timescales (ranging from seconds to minutes in duration), 
this is known as regulation reserve, and it is used to maintain 
system frequency during short-term fluctuations in power 
generation. A better understanding of solar PV generation 
variability assists power system operators in making 
decisions regarding optimum levels of system reserves. 

One important factor in solar PV power integration 
studies is the impact of varying geographic dispersion of PV 
generating units on overall PV output variability. Studies 

have shown that increased geographic diversity in the solar 
resource reduces the variability of power output at short 
timescales [1–2]. This is because solar irradiance is not 
highly correlated between even close locations at very short 
timescales. Mills and Wiser [1] found in their analysis of 23 
time-synchronized solar PV plant sites in the southern 
United States that even for five geographically close plants 
the variability of aggregated power output was greatly 
reduced relative to that of an individual plant at sub-hourly 
timescales. Thus, the geographic distribution of the solar PV 
resource has an impact on the regulation reserves necessary. 
This is critical because a key impediment to large-scale 
integration of solar resources is the high cost that is theorized 
to be a consequence of the necessity of increased reserve 
levels to accommodate increased variability. Some PV 
integration studies that analyze (simulated) large-scale solar 
resources have worked under the assumption that increased 
grid penetration of solar PV generation leads to increased 
operating costs because of higher levels of expensive fast-
acting reserves [3–8]. This paper addresses this assumption 
via statistical analyses of short-term variability of a large-
scale solar PV plant. 

In this work, we examined the variability of solar PV 
output among different arrays in a single large (~50 MW) PV 
plant in the western United States. We examined the 
correlation in power output ramps between arrays as well as 
aggregated plant output at varying timescales within the 
regulation timeframe (from 1 sec to 5 min). These analyses 
were undertaken with the aim of assessing the ramp and 
output smoothing that can be attributed to geographic 
diversity within a single very large solar PV plant. 

II. METHODS AND DATA 
This section outlines some of the important methods 

involved in the study. Section II-A contains information 
regarding the data sets analyzed in this paper. Section II-B 
provides some relevant background information regarding 
statistical methodology that may aid the reader in 
understanding the results that follow. 

A. Data Utilized 
In this paper, we examined solar irradiance and solar PV 

array output data from a PV plant located in the southwestern 
United States. The data sets consisted of four months 
(September to December 2011) of PV power output at the 1-
sec resolution level. In addition, data describing local 
weather and solar irradiance conditions for the solar PV plant 
and surrounding area were included. 

The authors are with the National Renewable Energy Laboratory, 
Golden, CO 80401; USA (email: bri-mathias.hodge@nrel.gov, 
sandra.shedd@nrel.gov, anthony.florita@nrel.gov, 
kirsten.orwig@nrel.gov) 
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B. Statistical Methodology 
Histograms and probability density functions are used to 

illustrate both the range of values that a given random 
variable can take and the likelihood of a sampled random 
variable falling in a specific range [9]. In this paper, we used 
them to characterize the ramps in PV power output at 
varying timescales. 

Often when analyzing data we want to know if two 
variables are correlated. Correlation measures the linear 
dependence between two variables, and correlation values 
fall within the range of -1 to 1. A value of 1 indicates that 
one variable is a positive linear function of the other, -1 
means one variable is a negative linear function of the other, 
and 0 indicates a lack of correlation entirely. In this paper, 
we used the Spearman [10] correlation statistic, ρ, defined in 
(1): 
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where x and y are the random variables in question (as 
vectors) and n is the length of the random variables [9–11]. 
In this paper, correlations between power output and changes 
in output levels between individual PV arrays were 
calculated for timescales ranging from 1 sec to 5 min. 

In Section III-B, the correlation coefficients calculated 
using (1) are displayed using heat maps, which is a graphical 
representation of data wherein the individual values in a 
matrix are represented as colors [12]. In the heat maps that 
follow, individual PV arrays were examined for cross-
correlation; thus, the heat maps display darker colors for a 
pair of arrays that were relatively uncorrelated and lighter 
colors for correlations of greater magnitude. 

III. RESULTS 
This paper has thus far discussed the importance of solar 

PV generation variability and introduced relevant statistical 
information. We next characterized the data statistically. In 
Section III-A, we assessed the variability of solar PV output 
in terms of observable ramps in individual PV arrays, in 
aggregate conglomerations of separate arrays, and 
throughout the entire plant. Section III-B incorporates the 
additional variable of timescales: correlation between ramps 
were considered at varying timescales ranging from 1 sec to 
5 min. 

A. Correlation of Power Output Fluctuations 
Figures 1–7 show the distributions of changes in 

instantaneous solar PV power output aggregated throughout 
the entire plant at timescales ranging from 1 sec to 5 min. 

 
Figure 1.  Distribution of changes in aggregated solar power output for the 
entire plant at 1-sec timescale 

 
Figure 2.  Distribution of changes in aggregated solar power output for the 
entire plant at 5-sec timescale 

 
Figure 3.  Distribution of changes in aggregated solar power output for the 
entire plant at 10-sec timescale 
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Figure 4.  Distribution of changes in aggregated solar power output for the 
entire plant at 15-sec timescale 

 
Figure 5.  Distribution of changes in aggregated solar power output for the 
entire plant at 30-sec timescale 

 
Figure 6.  Distribution of changes in aggregated solar power output for the 
entire plant at 1-min timescale 

Note that the scope of the histograms was limited to clarify visual 
appearance: the 1-sec, 5-sec, 10-sec, 15-sec, 30-sec, 1-min, and 5-min data 
sets contained ~182000, ~46800, ~29800, ~8100, ~8450, ~4900, ~1350 
data points of greater magnitude than the displayed x-axes, respectively. At 
all timescales this represented very small percentages of total data. 

 
Figure 7.  Distribution of changes in aggregated solar power output for the 
entire plant at 5-min timescale 

As shown in Figures 1–7, in all cases the distributions were 
centered near 0, with minimal skewness. All seven 
distributions exhibited fat tails that indicated significant 
instances of relatively high-magnitude ramps. These were 
the changes in power output that are most problematic for 
power systems operations. We address these ramps further 
in Section III-B. 

Table I summarizes an analysis of distributions of 
measured ramps in power output for various geographic 
spreads of PV arrays, including a single inverter, the entire 
plant, six inverters clustered within a short geographical 
distance, and six inverters scattered throughout the plant. 

TABLE I.  DISTRIBUTION STATISTICS FOR VARYING SPATIAL 
ARRANGEMENTS OF SOLAR PV ARRAYSA 

 
Timescale 

Single Inverter Entire Plant 
Standard 
Deviation KurtosisB Standard 

Deviation Kurtosis 

1 sec 0.9 29294.3 29.0 1047485 

5 sec 3.4 1280.2 95.4 64726.2 

10 sec 5.7 476.6 199.7 7960.3 

15 sec 7.5 335.7 282.8 2851.3 

30 sec 10.8 221.0 506.5 814.0 

1 min 14.2 160.4 838.3 269.0 

5 min 21.4 25.2 1731.6 29.2 
 

Timescale 
Clustered Inverters Scattered Inverters 

Standard 
Deviation Kurtosis Standard 

Deviation Kurtosis 

1 sec 3.4 91511.2 2.6 244050 

5 sec 14.1 2098.9 9.7 9235.9 

10 sec 25.6 591.8 16.4 2891.8 

15 sec 35.4 338.5 22.7 1225.2 

30 sec 56.2 213.6 36.6 527.6 

1 min 79.3 145.2 55.8 237.3 

5 min 119.3 25.4 111.5 28.5 

A. Instantaneous power output was calculated at each timescale and used to compute 
changes in power output at given intervals 

B. Kurtosis: statistical value measuring the relative magnitude of the peak of a distribution 
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Two observable trends in Table I were both the increase in 
standard deviation and decrease in kurtosis with increasing 
timescale. The increase in standard deviation indicated the 
increased spread of the data set around the mean (which was 
zero in all cases), implying greater variability in ramps at 
the “longer” timescales within the regulation timeframe. 

B. Ramp Correlations at Varying Timescales 
Figures 8–14 show the correlation of solar PV power 

output (left) and changes in output (right) between the 96 
different inverters in the PV plant. Table II lists the average 
Spearman’s ρ values for power output and changes at each 
timescale: 

  
Figure 8.  Heat maps of the correlation coefficients of (a) power output 
and (b) changes in output at 1-sec timescale for 96 inverters in the same PV 
plant measured during four months in 2011 

  
Figure 9.  Heat maps of the correlation coefficients of (a) power output 
and (b) changes in output at 5-sec timescale for 96 inverters in the same PV 
plant measured during four months in 2011 

  

Figure 10.  Heat maps of the correlation coefficients of (a) power output 
and (b) changes in output at 10-sec timescale for 96 inverters in the same 
PV plant measured during four months in 2011 

  
Figure 11.  Heat maps of the correlation coefficients of (a) power output 
and (b) changes in output at 15-sec timescale for 96 inverters in the same 
PV plant measured during four months in 2011 

  
Figure 12.   Heat maps of the correlation coefficients of (a) power output 
and (b) changes in output at 30-sec timescale for 96 inverters in the same 
PV plant measured during four months in 2011 

(a) 

 

(b) (a) 

(a) 

(a) 

(b) 

(b) 

(b) 

(b) 

(a) 
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Figure 13.   Heat maps of the correlation coefficients of (a) power output 
and (b) changes in output at 1-min timescale for 96 inverters in the same 
PV plant measured during four months in 2011 

  

Figure 14.  Heat maps of the correlation coefficients of (a) power output 
and (b) changes in output at 5-min timescale for 96 inverters in the same 
PV plant measured during four months in 2011 

TABLE II.  MEAN CORRELATION VALUES FOR POWER OUTPUT AND 
CHANGES IN POWER OUTPUTC 

Timescale 
Mean Value of 

Correlation for Power 
Output 

Mean Value of 
Correlation for 

Changes in Power 
Output 

1 Sec 0.96 0.14 

5 Sec 0.98 0.26 

10 Sec 0.98 0.37 

15 Sec 0.98 0.45 

30 Sec 0.98 0.59 

1 Min 0.97 0.67 

5 Min 0.97 0.84 

C. Instantaneous power output was calculated at each timescale and used to compute 
changes in power output at given intervals 

It is clear from Figures 8–14 and Table II that 
instantaneous power output between pairs of inverters was 
well correlated at each regulation reserve timescale 
considered. The average Spearman’s ρ values for power 
output ranged from 0.96 to 0.98 for regulation timeframes, 
indicating strong correlation in power output. 

Although understanding correlation of solar PV power 
output is important for integration of solar power into 
electricity systems, more critical for the determination of 
necessary regulation reserve levels is the correlation of 

changes in power output between individual solar PV power 
generating units. The dark blue colors of the heat maps that 
illustrate correlation in changes indicated the low correlation 
of power output fluctuations between individual PV units. 
Table II shows that the correlation of changes in power 
output was weak until the 5-min timescale (the longest 
timescale within the regulation reserve timeframe), and 
Spearman’s ρ values at all shorter timescales were all of too 
low magnitude to claim strong correlation. These low-
correlation coefficients indicated that the factors that caused 
variability in solar PV output at the regulation timescale 
were very localized weather patterns, such as a cloud 
passing over the PV arrays. 

A clear trend, however, was the steadily increasing 
correlation of ramps with increasing timescale. This can be 
explained by the nature of solar irradiance at very short 
timescales. In the regulation timeframe (seconds to 
minutes), the primary source of variability in power output 
is cloud movement. A cloud passing over a field of PV 
generating units will cause a ramp in power output for only 
a single panel or a very small fraction of the PV plant in 1 
sec. Therefore, at the 1-sec timescale, this ramp in power 
will not be experienced throughout the remainder of the 
plant, and thus correlation of changes in power output at the 
1-sec timescale is lower. During 5 min, in contrast, the same 
cloud may be able to move across the entire plant, causing 
all panels to experience power output ramps, yielding higher 
correlation of changes in power output among individual PV 
arrays. 

C. Intra-Plant Effects of Geographic Distribution 
It is clear, then, that geographic diversity of individual 

solar PV power generation units has an effect on the 
variability of power output within a single large-scale plant. 
This can be understood as an extension of the reduction in 
variability throughout an interconnected grid of multiple 
widely dispersed (i.e., several kilometers apart) solar PV 
plants, as described in previous studies [1–8]. Further, the 
influence of geographic distribution can be detected even in 
smaller groups of PV power generating units within the 
plant. This is evidenced by the distinct “checkerboard” 
pattern of higher/lower correlation coefficients inside the 
heat maps describing correlation of changes in power 
output. The inverters that provided the measured power 
output data were numbered by location/arrangement, 
yielding the patterned correlation maps in Figures 8–14. To 
investigate this further, Figure 15 presents a graph of the 
standard deviations of distributions of changes in power 
output for four different geographic arrangements of PV 
generating units within the large-scale plant: 

(a) 

(a) (b) 

(b) 
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Figure 15.  Graph of the standard deviations of distributions of ramps in the 
regulation timeframe for four different geographic configurations of solar 
PV generating units in a single large-scale PV plant. The configurations 
were a single generating unit (blue), the entire plant (red), six units 
clustered together in a contiguous area (green), and six units scattered 
throughout the total plant area (purple). 

As shown in Figure 15, the reduction in power output 
fluctuation variability between a single PV generating unit 
and the entire plant was immediately apparent. Even more 
interesting was the reduction in variability attributed to 
scattering even a small production capacity (in this case, six 
individual PV generating units) throughout the plant area 
rather than clustering them in a close group. The six units in 
the “scattered” subset were selected based on unit number to 
ensure their individual locations were widely dispersed. The 
units in the “clustered” subset were selected by considering 
six adjacent unit numbers to ensure they were 
geographically adjacent. Figure 15 shows that the standard 
deviations for the distributions of ramps for six scattered 
inverters (purple line) were consistently lower than those for 
the distributions of ramps for six clustered inverters 
throughout the regulation timeframe. Similarly, the kurtosis 
values reported in Table 1 revealed that the relative 
magnitudes of the peaks of the clustered-unit histograms 
were smaller than the peaks of the histograms for the 
scattered arrays, for both timescales considered. 

IV. CONCLUSIONS 
In this paper, we examined the variability of solar PV 

output in the regulation reserve timeframe among various 
arrays within a large-scale (~50 MW) solar PV plant in the 
southwestern United States. Although the distributions of 
changes in aggregate power output throughout all timescales 
considered were clustered around a strong peak at zero, the 
distributions at all timescales exhibited significant instances 
of higher magnitude ramps in the tails of the histograms. To 
further characterize these ramps, which are the most 
problematic for systems operators, we considered the 
correlation of changes in power output in regulation 

timescales for individual solar PV generating units 
throughout the plant. Understanding the correlation of 
changes in output is more critical for determining the 
regulation reserves necessary to maintain system stability 
than the correlation of instantaneous power output. Although 
power output levels for individual generating units were 
significantly correlated at all timescales within the regulation 
timeframe, correlation of changes in power output was weak 
for all timescales shorter than 5 min. The steady increase in 
correlation with increasing timescale can be explained by the 
lack of correlation of solar irradiance at very short 
timescales, and is evidence of smoothing of variability 
because of geographic distribution of individual generating 
units within a single PV plant. The lack of strong correlation 
at short timescales indicates that the impact on the levels of 
regulation reserve required to accommodate variability could 
be less than previously theorized. Further study could 
investigate the influence of intra-plant geographic 
distribution on reserve levels and the associated costs of 
dispatch processes and systems operations. 
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